Efficient tools for detecting micro- and nanoplastics in surface waters

Dr. Zsolt NémethLudovika University of Public Services

Microplastics

Microplastics

Main sources of MP and NP

How much is getting into our environment?

About 20 million t / year → increasing !!!

Source: 1. https://iucn.org/resources/issues-brief/plastic-pollution, 2. Sustainability 2021, 13(17), 9963; https://doi.org/10.3390/su13179963

Where is microplastics (MP)?

Type	of	pΙ	as	tic

Density (t/m3) 0.917-0.965

0.90-0.91

1.04-1.10

1.02-1.05

1.24-2.30

1.09-1.20

1.41-1.61

1.19-1.31

1.16-1.58

1.17-1.20

1.37-1.45

1.24-2.10

1.2

Type of plastic	
polietilén/ polyethlylene	
polipopilén/polypropylene	
polisztirol/ polystyrene	

poliamid (nylon)/ polyamide (nylon)

polioximetilén/ polyoxymethylene

polivinilalkohol/ polyvinyl alcohol

polivinilklorid/ polyvinylchloride

poliuretán/ polyurethane

polimetilakrilát/ poly methacrylate

polietilén tereftalát/ polyethylene terephthalate

Fortás: Bordós-G. Reiber J. Mikroműanyadok a környezetben és a ...

poliészter/ polyester

akril/ acrylic

alkid/ alkyd

Hundreds of millions of tons of MP and NP in the ocean and underwater...

Estimation → Measurement

News: "...we estimate that the mass of nanoplastic may amount to 27 million tonnes (Mt)." (Source:Hietbrink, Sophie et.al. Nanoplastic concentrations across the North Atlantic, Nature 2025 07.01.)

- NP pollution is pervasive and exists in concentrations millions of times higher, by particle count, than microplastics! (13-1700 pcs/liter...)
- NP oroginates mainly from the degradation of MP!

What is nanoplastics?

The Size of Micro- and Nanoplastics

Why is nanoplastics important?

Is there any correlation between MP and NP??

YES!

Depending on:

- 1. Type of MP, Polistyrene UV-degradation (Mattson et.al. Environmental Science & Technology, 2020)
- 2. Sources (eg. Municipal, Industrial..)

Summary: ... → It is indispensable to measure NP and MP!

– HOW ??

Samplers for MP 1.

1. Plankton nets (Manta nets)

Mesh size: $100 \mu m - 300 \mu m$

Advantages:

- Investigation of large sample
- Efficient in measuring large MP > 100 μm

Disadvatages:

- Inaccurate measurement of water quantity
- 1 μm < MP < 100 μm are not measured...
- Self-contaminantion
- Problematic cleaning

Samplers 2.

2. Pump-and-Filter Systems

Mesh size: $10 \mu m - 300 \mu m$

Advantages:

Accurate measurement of sample size!

Efficient in measuring smaller

MP < 100 μ m as well!

- Minimal danger of self contamination
- Easy cleaning

Disadvatages:

Smaller sample size than with Manta net V < 10 m3

Pump and filter sampling device (MP) (R, Lenz, M Labrentz,

Water 2018, 10(8), 1055; https://doi.org/10.3390/w10081055)

Samplers 3.

Grab samplers for water Advantages:

- Small, light, simple, cheap
- Minimal chance for self contamination

Disadvantages:

Very small sample volume →
 not representative for large water bodies

Samplers 4.

Grab samplers for sediment Advantages:

- Small, light, simple
- No chance for self contamination

Disadvantages:

- Very small sample volume →
 not representative for large water bodies
- → Large number of samples needed!

Samplers 5.

Passive samplers, sediment traps

Advantages:

- Small, simple
- No chance for self contamination
- Long time data
- Low operation cost

Disadvantages:

- Very small sample volume →
 not representative for large water bodies
- → Large number of samples needed and
- Long time needed for evaluation

Measuring nanoplastics 1.

- → Removing NPs is difficult due to their small size (<1000 nm), diversity, and low environmental concentrations, which are often masked by NOM!
- → The most effective filtration techniques are not simple mechanical filters but rely on physico-chemical processes, often used in combination:

Measuring nanoplastics 1.

- → Removing NPs is difficult due to their small size (<1000 nm), diversity, and low environmental concentrations, which are often masked by NOM!
- → The most effective filtration techniques are not simple mechanical filters but rely on physico-chemical processes, often used in combination:

Membrane Filtration:

- Ultrafiltration (UF): Effective for larger NPs (1-100 nm), but smaller particles can pass through, and membranes can foul easily.
- Nanofiltration (NF): With pores ~0.5-1 nm, NF removes a significant fraction of NPs but requires higher energy and is also prone to fouling.
- Advanced Membranes: e.g., TiO₂ or ZnO nanoparticlecoated membranes that not only filter but also photocatalytically degrade trapped plastics, reducing

Measuring nanoplastics 1.

- → Removing NPs is difficult due to their small size (<1000 nm), diversity, and low environmental concentrations, which are often masked by NOM!
- → The most effective filtration techniques are not simple mechanical filters but rely on physico-chemical processes, often used in combination:

Membrane Filtration:

- Ultrafiltration (UF): Effective for larger NPs (1-100 nm), but smaller particles can pass through, and membranes can foul easily.
- Nanofiltration (NF): With pores ~0.5-1 nm, NF removes a significant fraction of NPs but requires higher energy and is also prone to fouling.
- Advanced Membranes: e.g., TiO₂ or ZnO nanoparticlecoated membranes that not only filter but also photocatalytically degrade trapped plastics, reducing

Measuring nanoplastics 2.

Activated Carbon:

 Granular (GAC) or Powdered (PAC) Activated Carbon uses adsorption to trap NPs, especially hydrophobic types like polystyrene (PS) and (PE).

Electrocoagulation (EC):

 Applying an electric current using metal (e.g., Al, Fe) electrodes. The dissolving metal ions form coagulants in situ, which form flocs to trap NPs. → Bubble generation ..→ flotation!

Advantage: Very effective, uses fewer chemicals, and handles stabilized nanoparticles well.

Efficient practical implementation

Multi-barrier approach:

Pre-filtration (300µm→ 100µm→ 10µm) Lab preparation → filtration 1 µm.

- → Coagulation/Flocculation → Sedimentation or flotation → Activated Carbon Filtration → Nanofiltration (NF, TiO2 ceramic filter)
- → Laboratory analitics!

Analytical Methods for Identification and Characterization

Core Challenge: Distinguishing synthetic NPs from natural particles and characterizing them at very low cc.

A combination of anal. techniques is always required!

- 2. Transm. E. Microscopy (TEM): Higher resolution, allowing for the analysis of the internal structure and more precise size measurement of individual NPs.
- 3. Atomic Force Microscopy (AFM): Provides 3D topographic maps, giving accurate information on particle height and shape.

For Polymer Identification (Spectroscopy):

Raman Microscopy: The gold standard (~100nm-1µm). A unique molecular "fingerprint" spectrum for each polymer type (e.g., PET, PE, PS), allowing for precise identification. It can analyze single particles.

Fourier-Transform Infrared Spectroscopy (FTIR): Similarly identifies polymers by their functional groups. Micro-FTIR is used for single-particle analysis. It excels at identifying specific chemical bonds.(10µm - ...)

Flow cytometry

For counting and analysing MP and NP particles of size: 200nm-100µm

1. Fluorescent Staining (hydrophobic) \rightarrow 2. Hydrodynamic Focusing \rightarrow 3. Laser Interrogation \rightarrow 4. Detection & Analysis

<u>Forward scatter</u> – particle size, <u>Side scatter</u> - complexity/internal granularity <u>Fluorescence</u>: material identification based on intensity!

High-Throughput!

Hi sensitivity! (488nm, 405 nm)

Large size range!

For small MP and large NP..

Excellent complementer for

Pyrolysis-GC-MS!

Sensitive Mass Quantification (Mass Spectrometry):

Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC-MS):

The sample is pyrolyzed (certain T) → characteristic polymer fragments are separated by gas chromatography and identified by mass spectrometry.

Advantage: determins the exact polymer type and its mass concentration, but it destroys the sample...

Multi functional pyrolysis system

(https://www.frontier-lab.com/products/multi-functional-pyrolysis-system/200599/)

Summary

- 1. Sampling of MP and NP in surface water is complicated and non standardised yet.
- 2. Lab preparation is crucial and different for each sample type!

 Analytics of NP is very demanding, particle number and size distribution are often estimated.

Thanks for attention

Microplastics

Zsolt Németh Ph.D.: Nemeth.Tamas.Zsolt@uni-nke.hu

Pump and filter device operation

Filters for WWTP

Starting considerations:

- 1. Even small WWTP-s have a huge flow ~ 1000 m3/h! → self cleaning device with the possible largest filter area
- 2. It must be simple and cheap to install and operate!
- 3. It should be efficient (filter out above 100 micron...)
- 4. Easy to repair and change filter tissue
- 5. In the case of havaria easy to eliminate or naturally bypass!

How to install?

96

Operational conditions

Filter in the effluent channel

- Up to a certain high..
- self washing with tangential flow
- Only if there is no swimming sludge Or foaming, no filamentous organisms In the discharge and the secondary Sedimentation works well!!

(no denitrification, NOM, foam...etc.)

Mechanical cleaning each month!

